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Biphasic, mixed gels of agarose and gelatin were prepared, and their mechanical behaviour in tensile tests was 
determined, up to failure, utilising four decades of (constant) strain rate. The behaviour of pure agarose and 
pure gelatin in such tests has been determined previously. Suitable 'blending-laws' relating the small 
deformation shear modulus of the composite to the moduli of the component phases have also been discussed 
elsewhere. This report extends the latter treatment to the more aggressive large deformation regime, deriving 
bounds for modulus and break stress which closely model observed behaviour. 
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I N T R O D U C T I O N  

The mechanical properties of both agar and gelatin gels 
have been examined in considerable detail by ourselves 
and other workers 1. Some aspects of this behaviour seem 
to be exhibited by gelling systems in general, and are 
attributable to the properties of a macromolecular net- 
work, rather than specific to the polymer of which it is 
composed. However, this work is concerned with how the 
material parameters of a composite system can be derived 
from those of the component phases. For  the present 
purpose, it is sufficient to describe the mechanical res- 
ponse of the pure gels in a purely phenomenological 
fashion. 

A mixed agar-gelatin gel displays a phase-separated 
microstructure, e.g. as roughly spherical inclusions of 
gelatin embedded in an agar matrix, or vice versa 1. (In this 
sense, a 'phase' is to be considered as the gel component, 
consisting of biopolymer plus water. As will be seen, the 
manner in which the two polymers partition the available 
solvent is of particular relevance.) The various theoretical 
models which have been developed for this type of 
'matrix-filler' combination have focussed mainly on small 
deformation, linear elastic behaviour 2-6. Experimental 
work has largely been concerned with systems in which 
the moduli of the components differ by several orders of 
magnitude, e.g. fibre-reinforced resins or graphite-loaded 
rubbers. In the systems under discussion, the moduli of 
the two gel phases are of comparable magnitude. In 
addition, the failure properties depend rather markedly 
on the strain rate applied. Consequently, a novel theoreti- 
cal framework has been developed, based on the original 
Takayanagi isostress and isostrain models v's, which 
bounds rather than defines the expected properties of the 
composite. Elements of the Takayanagi theory are fairly 
readily extended to the large deformation regime, details 
of the derivation being given in the Appendix. The picture 
which emerges is of a composite material whose proper- 
ties are predominantly those of the supporting matrix, 
modified in a consistent manner by the presence of filler. 

Optical and electron micrographs of the mixed gels 
bear a striking resemblance to those obtained for certain 
synthetic interpenetrating networks 9'1°. More impor- 

tantly, a number of systems of practical importance, 
whose failure properties are of interest, might be regarded 
as gels containing a soft filler. Examples include latex 
systems, and the soil mechanics of some clay structures. 
There are also implications with respect to biological 
systems, proteins and polysaccharides being the major 
structural polymers in nature. 

It is interesting to speculate on the possible extension of 
the range of experimental techniques, which must await 
the development of a more refined blending law. Easily 
broken materials might be rendered more tractable to 
experiment by the inclusion of a suitable filler of known 
properties. It is also worth noting that the partition of 
solvent by the two polymers can produce component gels 
of somewhat higher concentrations than can easily be 
achieved in isolation in the laboratory. 

In what follows, the nominal stress (force per unit 
original cross-sectional area), strain and extension ratio 
are denoted by the symbols a, e and 2, respectively. 

PROPERTIES OF SINGLE C O M P O N E N T  
BIOPOLYMER GELS 

The detailed behaviour of aqueous gels of agar or gelatin 
has been extensively discussed previously, and will be 
reviewed here only briefly (see previous paper). 

The Young's modulus (or pseudo-equilibrium Young's 
modulus), E, is taken to be three times the shear modulus, 
G (i.e. deformation is assumed to occur at constant 
volume) and depends on concentration. The form of this 
dependence is of considerable interest in its own right, but 
for present purposes it suffices to state that when the 
polymer concentration is known, the modulus can be 
adequately determined (see e.g. ref. 11). 

The response of stress to strain is non-linear, but does 
not greatly depend on strain rate over the range of 
conditions accessed. This profile could be fitted well by the 
phenomenological equation of Blatz, Sharda and 
Tschoegl (BST equation12), vis. 

a=2E(2. ,_,~ (.+2)/2) 
3n 

(1) 
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The parameter n may be regarded as an empirical 
measure of deviationsfrom'ideal' behaviour (n = 2 returns 
the well-known equation of rubber elasticity). Experiment 
has shown that n does not depend on agar or gelatin 
concentration, but takes different values for the two 
polymers (n = 3 for gelatin, 4.2 for agar)- for details see 
ref. 13. 

It is of relevance to understand how the properties of a 
gel are altered when solvent (water) is removed. This can 
be achieved experimentally by an air-drying technique, 
and it is found that a reduction in volume and increase in 
modulus occurs. Denoting initial and final states by i and 
f, an adequate empirical description is given by 

Gf ~xcf,,/ (2) 

Classical Flory-Rehner type swelling theory would 
give q = 2/3 (e.g. ref. 14), but if completely labile crosslinks 
are assumed, G~ is given by the modulus-concentration 
relationships referred to above. The experimental value 
for gelatin (q ~5/3) lies somewhere between these two 
cases, although no corresponding data are available for 
agar. Removal of water did not change the shape of the 
stress response for gelatin (i.e. the BST exponent, n, was 
not altered). 

While equation (1) is an adequate description of the 
stress profile, how far along this curve we can proceed 
before failure occurs depends on the strain rate employed. 
Plots of break stress against strain rate (log tr B against ~) 
display a shallow minimum, the break stress falling with 
decreasing strain rate, but rising again at the slowest rates. 
The characterization of this behaviour is detailed in a later 
section, but the salient trends are that the gelatin gels of 
different concentrations give parallel curves, the mi- 
nimum occurring at the same strain rate, but the height of 
the minimum being a linear function of modulus. 

Agarose gels display similar behaviour, but generally 
fail more readily than gelatin gels of comparable modulus 
(in particular, the minimum break stress is considerably 
smaller). Also, the minimum occurs at a lower strain rate. 

EXPERIMENTAL 

Preparation of samples 
The gelatin was supplied by Croda as Croda boned (250 

Bloom strength) gelatin (acid form). Concentration was in 
the range 5-25~o by weight. For pure gelatin gels, samples 
were prepared by dispersing the gelatin into cold water 
and heating to 65°C until dissolved. Water lost by 
evaporation was replaced and the solution transferred to 
screw-top bottles, which were placed in water at appro- 
ximately 60°C to allow deaeration to occur. 

The agar was supplied by Lysander Foods, and was 
used at concentrations of 1~o and 2~o w/w. For the agar 
gels, the required amount of agar was dispersed in water 
and autoclaved to dissolve the agar. Mixed co-gels ofagar 
and gelatin were prepared by cooling the above solution 
to 45°C and then dissolving the gelatin in the agar 
solution as above. In all cases, solutions were poured into 
a mould consisting of two polished glass plates separated 
by precision spacers, 1 cm for ring samples (see below). 

Tensile specimen geometry 
In previous work on filled gelatin gels 2, notched 

dumbbell specimens were used. For weaker gels, this 
geometry presents experimental problems. 

Other specimen geometries have been studied by a 
number of groups; in particular Myers and Wenrick 1~ 
have carried out a careful evaluation of dumbbell, ring 
and (hollow) oval specimens. In the latter cases, the 
specimen is hung over two polished dowel pins, one 
mounted on the transducer stage, and the other on the 
driven stage of the tensile testing instrument. At the 
maximum stresses reported here (~  105 Pa), the agree- 
ment between their results for ring and oval samples is 
excellent, and in succeeding sections, work on ring shaped 
specimens will be reported. 

The rings themselves were cut from the cast gel sheet 
with two concentric cylinder knife edge cutters, to give a 
specimen with outer diameter 48.5 mm and inner dia- 
meter 37.0 mm (ratio OD/ID = 1.31), using the knife edged 
dies and a hand press; the dowels were of stainless steel 
and were of diameter 12.5 mm. The Instron was a Model 
1122 Universal Tester, the extension rates were 1- 
1000 mm/min and measurements were taken at room 
temperature, 22___0.5°C, in a temperature controlled 
room. 

TREATMENT OF DATA 

The tensile force in each leg of the ring is half the measured 
force, stress being obtained by division by the cross- 
sectional area. Strain was calculated on the basis that an 
increase in pin separation, x, results in an increase of total 
circumference of 2x, the original circumference being 
calculated from the mean ring diameter. There is always a 
small 'tail' in the force~lisplacement curve while the ring 
straightens into a state of true simple tension. Data in this 
region were obtained from a backward extrapolation of 
the linear portion of the profile, which can usefully be 
accentuated by logarithmic plotting. 

RESULTS AND DISCUSSION 

When a body of composite material is deformed, any 
description of its mechanical response will require some 
assumptions to be made regarding the distribution of 
stress and strain by the component phases. Previous work 
on agar-gelatin systems I placed bounds on the modulus 
of the composite according to the isostress and isostrain 
limits of Takayanagi s'9. This approach is fairly readily 
extended to larger deformations. Details of the derivation 
are discussed fully in the Appendix, but for the moment 
attention is restricted to those predictions most easily 
comparable with experiment. 

Modulus and shift parameter 
In the limit of Hookean 

bounds are given by 
behaviour, the modulus 

Ec = ~ E ~  + 4~rEy 
(isostrain) (3) 

and 

1 ~b~ ~_~by 
Ec Ex E r 

(isostress) 

(4) 

1494 POLYMER, 1985, Vol 26, September 



Large deformation and ultimate properties of biopolymer gels. 2." H. McEvoy et al. 

where the ~bi are the volume fractions of components x 
and y, and the subscript c refers to the composite as a 
whole. 

The generalization to large deformations, in terms of 
the BST function appropriate to each phase, predicts a 
series of parallel (log a against log e) curves (cf. Appendix). 
These are linear up to 65~ strain, with a slope of unity in 
the linear region. Two gels of different composition give 
stress curves which are superposable by a 'shift' through a 
distance logb, where the parameter b is the ratio of the 
moduli of the two composites. Since the limiting slope is 
unity, this shift can be parallel to either axis, but shifts 
parallel to the abcissa were employed for compatibility 
with earlier work on glass-filled gelatin gels 2. 

Two series of composite gels were tested, containing 
agarose at levels of 1~o or 2% w/w and varying amounts 
of gelatin. If, for each series, the pure agar is chosen as 
reference state of modulus E 0, say, then it is convenient to 
express the composite modulus of the other systems in the 
series by the ratio EJE o, and denote shift parameters 
relative to this state. In this way, the Young's modulus, 
shear modulus and shift parameter can conveniently be 
displayed as a single curve, and for a given composition, 
the three values should coincide. 

Estimation of E and b 

The modulus was calculated from the initial slope of the 
stress-strain curve, or from a non-linear least squares fit 
to equation (1). In most cases, agreement was better than 
+5%. 

For a given composition, the stress-strain profiles for a 
number of test replicates define a narrow envelope of 
curves. This is attributable to experimental scatter, no 
trend is observed with changing strain rate, and all 
replicates are considered to define the same curve. How- 
ever, how far we can proceed along this curve before 
failure does depend on strain rate. The locus of failure 
values thus defines a segment of the stress-strain profiles 
known as the failure envelope t6 and is usually plotted as 
log (kB against log e~. It was from the relative positions of 
the failure envelopes that the shift parameter, b, was 
obtained. 

Partition of solvent 

Calculation of the modulus bounds according to 
equations (6) and (7) requires a knowledge of the moduli of 
phases x and y, which in turn requires a knowledge of the 
polymer concentration in each of the two phases. Essen- 
tially, it is necessary to relate the nominal concentrations 
C n°m, C~Y m (the weight per cents of agar and gelatin in 
solution prior to gelation), to the effective concentrations 

eft C~ n, Cy in the resulting composite gel. Clark et al. ~ define a 
parameter p, a measure of the relative affinity of the two 
networks for solvent (water), and derive suitable ex- 
pressions for the effective concentrations and volume 
fractions of the two phases. 

Naively, it is possible to proceed by calculating the 
modulus of each phase based on its nominal polymer 
concentration. However, when solutions of agar and 
gelatin are cooled, the agarose gel sets at a higher 
temperature than gelatin. Thus, representing agar as 
phase y, it is expected that a gel forms at the nominal 
concentration C ;  °m, of modulus G~ °", say, which is then 
increased to Ce~ (effective) by partition of water as the 
gelatin gels. We then generalize equation (2) to give 

G;°m (c;°m~ q 
- ~ -  ( 5 )  c, \ c , )  

Predictions based on this treatment, for a value of p = 1 
and several values of q, are shown in Figures I and 2 along 
with experimental moduli and shift parameters. The lower 
bound is relatively insensitive to the exact value of q, and 
is only shown once, for clarity. Appropriate choice of this 
parameter gives an upper bound which reproduced the 
minimum in the data, also reported by other workers 17,18 
The previous plot by Clark et al. corresponds to q=0.  

Since the gels are phase-separated, partition of solvent 
must occur, but the assumption that p is independent of 
concentration is open to question. Clark et al. examined 
the sensitivity of the model to the value of p, and it is 
evident that any reasonable concentration dependence 
would not grossly affect their conclusions. Thermo- 
dynamically, p should be derivable from the Flory- 
Huggins interaction parameter Z 14. Since data on 'de- 
swollen' (air-dried) gelatin gels indicates some redistri- 
bution of crosslinks, q must be regarded as an additional 
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Figure I Shear modulus  (A), Young's  modulus  O) and shift factor (O) 
for the 1% agar gel series. Moduli  are relative to the value for pure agar. 
Solid curves give the isost rain predictions for p = 1 and q = (A) 0, (B) 0.33 
and (C) 0.67. Heavy curves give the isost rain (upper) and isost tess (lower) 
predictions for a system with fully labile crosslinks 
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Figure 2 Shear modulus (A),Young's  modulus  (O) and shift factor ( 0 )  
for the 2% agar gel series. Moduli  are relative to the value for pure agar. 
Solid curves give the isost rain predictions for p = 1 and q = (A) 0, (B) 0.33 
and (C) 0.67. Heavy curves give the isostrain (upper) and isostress (lower 
predictions for a system with fully labile crosslinks 
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parameter. An exact determination of either p or q would 
require additional experimentation, but the use of such 
parameters is not only reasonable, but necessary. 

Ultimate properties 
The theory was extended to encompass the expected 

behaviour of the break stress of the composite as a 
function of strain rate. This derivation is fully discussed in 
the Appendix, and is based on the assumption that failure 
of the composite occurs when the stress in the matrix 
phase is high enough to cause it to fail. 

As composites are formed of increasing gelatin con- 
centration, a phase-inversion takes place, a transition 
occurring from gelatin inclusions in an agar matrix to the 
inverse situation. The gelatin content at which this 
inversion occurs was estimated from the microscopy 
experiments reported by Clark et al. (2.5~o for the 1~ agar 
series, between 5 and 6~  for the 2~  series). Now, isostrain 
behaviour is expected when the higher modulus (agar) 
phase is the supporting phase, and isostress behaviour for 
the lower modulus gelatin matrix 8,9. This transition is not 
evident from modulus data alone, since the predicted 
bounds tend to converge at higher gelatin content. 

Break stress against strain rate curves for the 2~o series 
are shown in Figure 3 along with the curve for a 25~ 
gelatin gel. The 'agar-like' to 'gelatin-like' transition is 
evident from the curve shapes. 

The quantitative predictions of the model are most 
clearly demonstrated by calculating limits for the co- 
ordinates of the minima of these curves, ~m~,, as¢.~," As 
mentioned above, and developed fully in the Appendix, 
the calculation of these limits assumes that failure occurs 
in the matrix phase. Consequently the details of the 
calculation depend on which component (agar or gelatin) 
constitutes the supporting phase. As the phase inversion is 
passed, a transition from isostrain to isostress behaviour 
is expected. Although no attempt has been made to model 
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Figure 4 Isostrain (solid) and isostress (broken) predictions for the 
minimum break stress (relative to pure agar) for the 2% gel series (based 
on p = 1, q = 0.33). Solid circles denote experimental values. A, G, refer to 
agar and gelatin respectively as supporting phase. 
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Figure 3 Break stress against strain rate for the 2% agar gel series. 
Numbers refer to gelatin concentration. Curve A is agar alone, and curve 
G that for 25% w/w gelatin alone 

the details of the transition, the gross predictions of the 
model on either side of the (assumed) phase-inversion 
point (see above) have been presented in Figures 4 and 5 
for the 2 ~  series, along with the experimental values. 
Similar results are obtained for the 1% series, except for an 
anomaly in the case of the 2½~ gelatin concentration, 
which is close to the phase inversion point. The values of 
the modulus for this gel put it closer to the isostrain 
('agar-like') limit, but the failure properties would suggest 
isostress ('gelatin-like') behaviour. 

Of course, since failure is initiated by stress con- 
centration at some microscopic defect (e.g. ref. 16), the 
inherent heterogeneity of these systems gives rise to 
considerable scatter in the data. Thus, some caution must 
be exercised when the analysis described above is carried 
out (see next section). 

Statistical significance of failure data 
The dependence ofbreak stress on strain rate has been 

rationalized on theoretical grounds, but for the purposes 
of this report, a simple quadratic fitting procedure has 
been used, which makes predictive modelling simpler and 
renders statistical analysis more tractable. 

Hayes 19 reports a numerical technique which fits the 
data set to polynomials of successively higher degree, 
applying a statistical test at each stage to ensure that any 
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Table 2 Statistical analysis of break stress vs. strain rate data 

G 

10 15 20 25 
Gelatin concentration ( w/w % ) 

Figure 5 Is•strain (solid) and is•stress (broken) predictions for the 
strain rate at which minimum break stress occurs (relative to pure agar) 
for the 2~ gel series (based on p= 1, q=0.33). Solid circles denote 
experimental values. A, G, refer to agar and gelatin respectively as 
supporting phase 

improvemen t  is significant. Appl ica t ion  to the break  
s tress/s t rain rate curves conf i rms tha t  a quadra t i c  fit is 
more  significant than  a l inear  fit, which is in turn more  
significant than  tak ing  the mean  of  the break  stress values 
(Tables 1 and  2). This conf i rms the dependence  on strain 

Table 1 Statistical analysis of break stress vs. strain rate data 

Gelatin 
concentration Hypothesis Hypothesis 
(w/w ~o) No. of points A B 

Gelatin 
5 10 90 75 

10 17 95 5O 
15 14 99.5 95 
20 12 75 99 
25 13 95 99.9 

Air-dried gelatin 
12.5 15 90 50 
16.8 8 50 90 
19.5 7 75 75 
21.5 9 90 90 

Hypothesis A Linear regression is more significant than mean value 
Hypothesis B - Quadratic regression is more significant than linear 
regression 
Entries in the table give the probability that the hypothesis is true 
(expressed as a percentage) 

Gelatin 
concentration Hypothesis Hypothesis 
(w/w °O) No. of points A B 

1% Agar series 
0 9 99.5 75 
2.5 10 97.5 50 
5 15 99.9 90 

10 16 less than 50 73 
15 14 99.5 90 
20 15 97.5 less than 50 
25 14 99 50 

2~o Agar series 
0 14 99 50 
2,5 15 99.9 50 
5 15 99.9 50 

10 11 95 90 
20 16 99.9 90 
25 14 97.5 75 

Hypothesis A - Linear regression is more significant than mean value 
Hypothesis B - Quadratic regression is more significant than linear 
regression 
Entries in table give the probability that the hypothesis is true (expressed 
as a percentage) 

rate, and  shows that  the observed curva ture  is not  an 
artefact  due to d a t a  scatter.  (The solid curves in Figure 3 
are the 'bes t  fit' quadra t i c  plots). 

The  quadra t i c  coefficients, and  the der ived co-ord ina tes  
of the m i n i m u m  [emin, ami,], being functions of a r a n d o m  
var iable ,  are  themselves r a n d o m  variables ,  and  amenable  
to the hypothes is  test ing of  s tat is t ical  analysis.  (Note  that  
care must  be taken  as to  the p r o p e r  es t imate  of var iance to 
use for each p a r a m e t e r  (see, e.g. ref. 20).) In  general ,  train is a 
well-defined parameter .  The  min ima,  however ,  are shal- 
low, and  two calcula ted  values of ~min are  not  significantly 
different if the best  es t imates  are  closer  than,  say, half  a 
decade  on the s train rate axis. O u r  conclus ions  are  
summar ized  below. 

F o r  all  systems,  the da t a  can be fitted by an equa t ion  of 
the form:  

log aB = a( log ~)2 + b log ~ + c (6) 

F o r  a series of concen t ra t ions  of a given po lymer ,  only 
coefficient c varies significantly,  in a manne r  which leads 
to  the result 

aBj,~n=AE +B (A, B constants ,  but  different for agar,  
gelatin) 

(7) 
F o r  single c o m p o n e n t  gels, ~'min for agar  (1.18 x 10-3 s -  t) 
is significantly different from the value for gelat in 
(1.16 x 10 - 2 s - 1 ) ( > 7 0 ~  significance). 

Compos i t e s  in which agarose  is the matr ix  phase  
canno t  be d is t inguished from agarose  itself on stat is t ical  
grounds.  Nonetheless ,  the is•s t ress  model  predicts  values 
Of~mi n which differ f rom the value  for a pure  agarose  gel by 
several  orders  of magni tude .  Thus,  while the expected 
i s • s t r a in  behav iou r  canno t  be conf i rmed stat ist ical ly,  the 
is•s t ress  pred ic t ion  must  be d iscounted  as a possibil i ty.  

F o r  'gela t in- l ike '  systems, i s•s t ress  behav iour  is ant i -  
c ipated,  but  the predic ted  var ia t ion  in emi, is too  small  to 
al low stat is t ical ly significant resolution.  When  aa~o is 
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considered, all curves are significantly different from their 
neighbours. Overall we conclude that the numerical 
values are inconsistent with isostrain behaviour. 

SUMMARY AND CONCLUSIONS 

The Takayanagi model has been extended to encompass 
large deformation and failure properties, in a manner 
which places bounds on the mechanical behaviour of a 
phase-separated composite system in the presence of a 
solvent component, if the properties of the component 
phases are known. For a mixed biopolymer gel, these 
component properties can be deduced from the com- 
position via a solvent affinity parameter p, and a 'deswell- 
ing parameter', q, which could, in principle, be determined 
experimentally (e.g. by performing a series of osmotic 
measurements and modulus determinations on single 
component gels). Observations on the behaviour of 
deswollen gels (see ref. 13) makes this approach seem 
eminently reasonable. 

Many of the rationalizations employed depend on 
being able to relate modulus to concentration in an 
adequate fashion. Work on this problem has been exten- 
sively discussed previously (e.g. ref. 11), and not only does 
the relationship developed fit data well, but has the same 
functional form for all biopolymer gels studied (including 
globular proteins). 

The microscopy evidence for phase-inversion leads to 
the expectation of a transition from isostrain to isostress 
behaviour. This is seen in the behaviour of the ultimate 
properties, if not from the modulus dependence, and 
validated by statistical analysis. 

Thus, the model can place definite limits on the 
behaviour of a composite, phase-separated gel, provided 
the properties of the component polymers are known. 
Although the built-in assumptions are not unreasonable, 
it may at worst be regarded as an empirical para- 
meterization with predictive properties that are encourag- 
ingly successful. More optimistically, it provides a frame- 
work for the development of more refined treatments, 
utilizing the ideas of solvent partition between component 
phases, realistic 'blending-laws', and the extension of 
current models beyond the regime of linear behaviour. 
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APPENDIX 

Derivation o f  theoretical expressions 

Initially it is assumed that phases x and y behave in the 
composite as they do in isolation (viz. equation (1)). 
Previous use of this equation invoked incompressibility, 
which automatically ensures that the volume fractions of 
the two components remain constant at all deformations. 

The isostrain case 

Consider a thin horizontal section through the com- 
posite material (Figure 6a). It is readily shown that 21 the 
areas of the two phases (Figure 6b) are given by 

A x = c ~ A  Ar=~brA (A1) 

If we assume that each component experiences the same 
strain (and hence the same strain rate) then (Figure 6c) 

~c = Fff A = (Ix  + Fy)/A (A2) 

and substituting from (A1) and employing the BST 
equation gives 

a~ = C~xa ~ # q~ra, = ~xExfx(2¢) + c~,E,f,(2~) (A3) 

where, e.g. 

ax = F f f  A~ = Eff~ (2¢) = (2Ex/3n~)(2"'- ~ - 2-("" + 2)/2) 

The upper bound on the modulus (equation (3)) is readily 
obtained in the Hookean limit. 

The isostress case 
Focussing attention on a thin vertical section through 

the composite (Figure 7) it is readily shown (e.g. ref. 21) 
that the initial 'lengths' of phases x and y are given by 

lx o = q~xlo ly o = ~b,lo ( A 4 )  

If each phase experiences the same stress, the deformation 
in each phase is such that 

Al = A/x + AIr 

leading to 

ec = ~bxex +4'~r (A5) 
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Similar expressions are derived for 2c$ c. The stress is given 
by 

Go = E=L(,~x) = GL(,~,) 

leading to the expression 

2~ = C~x L-  ~(a¢/Ex) + 49rf r- '(ac/Er) (A6) 

This latter equation cannot be readily simplified analyti- 
cally, but can easily be computed for predictive modelling. 
Again, the limiting case of small deformation returns the 
(lower) bound in the modulus. 

The stress-strain profiles predicted by (A5), (A6) were 
calculated using appropriate values for volume fraction 
and modulus, doubly logarithmically. It was found that 
all plots, including that for pure agar (the single BST 
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equation z) were linear up to roughly 65~o strain, showing 
an upward curve thereafter. The degree of curvature was 
markedly different for different composites at higher 
strains, but indistinguishable from experimental scatter 
up to about 200~o. No test specimens attain as much as 
120~o before breaking. Thus, within the limits of experim- 
ental resolution and accessibility, 

loga~=log(f()~))+logE~-loge~+logEc, e~<0.65 (A7) 

It is the form of equation (A7) which allows the use of the 
so-called stress concentration parameter b introduced in 
ref. 2. If any such systems could attain higher strains 
without breaking, a more complex treatment would be 
required (see e.g. ref. 22). 

If we now assume that failure occurs when the matrix 
phase (phase x, say) breaks, we have (cf. equation (6)). 

log trB, = a(log(kx)) 2 + b log k x + c (A8) 

O" c O" x 
Since e . . . .  for the isostrain case 

Ec Ex 
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log aB.c = a(log k)2 + b log ~ + c + log(EJEx) (A9) 

which is the curve for the matrix shifted vertically by an 
amount log(EJE~). 

For  the isostress case, a~ = E&¢ = Exe,, and it is easily 
shown that 

log ~Bx = a(log k¢ + log(EJEx)) 2 

+ b(log ~c + log Ec/Ex) ) + c 
(AlO) 

i.e. the curve for the matrix shifted horizontally by an 
amoung log(EJEx). 

This analysis has assumed Hookean behaviour (valid 
up to ~ 65~ strain), but since the curves are characterized 
by the position of the minimum, which, experimentally, 
lies within the linear range, the general conclusions are 
valid. The more severe assumption is that failure only 
occurs in the matrix, which implies that if the stress is high 
enough to cause failure within a filler 'particle', the 
growing crack cannot cross the matrix-filler 'interface'. A 
close examination of the microstructure of such a mixed 
gel 1 shows that such an 'interface' is rather poorly defined. 
Nonetheless, this model does predict the observed be- 
haviour rather successfully, and must be regarded as a 
suitable starting point for future refinements. 
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